
Approximation Algorithms for Covering and Packing
Problems on Paths

Arindam Pal
Advisors: Prof Amit Kumar and Prof Naveen Garg

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

January 31, 2014
IIT Delhi

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 1 / 35

Agenda

The Unsplittable Flow Problem and its variants

Survey of existing results and our contribution

Resource allocation for scheduling jobs

Related work and our contribution

Conclusion and future work

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 2 / 35

Unsplittable Flow Problem with Rounds (Round-UFP)

Given a path P = (v1, e1, v2, e2, . . . , en−1, vn) on n nodes.

Edge ei has capacity c(ei) ≡ ci.
There are k intervals (requests) I1, . . . , Ik.

Ii = [si, ti] and there is a demand di associated with it.

A set of intervals I is feasible if the total demand of all intervals in I
passing through any edge e does not exceed it’s capacity c(e).

Goal is to partition the requests I1, . . . , Ik into a number of sets such
that each set is feasible and the total number of sets is minimized.

We can think of this as assigning colors to intervals so that each color
class is feasible and we want to minimize the number of colors.

This can also be thought of as routing the requests in a feasible
manner in a number of rounds.

Can be studied under offline or online setting.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 3 / 35

A sample Round-UFP instance

d1 = 7

d2 = 5

d3 = 8

d4 = 6

10 10 13 15 14 11 10

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 4 / 35

The Max-UFP and Bag-UFP problems

For Max-UFP, the setting is similar to Round-UFP except, for
each request Ii there is a profit wi.

If we can route a request, we get the corresponding profit.

The objective is to select a feasible subset of requests having the
maximum profit.

In Bag-UFP, there is a set of bags each containing a set of requests.

Each bag Bj has a profit pj .

At most one request can be selected from each bag. If we select a
request from a bag Bj , we get the profit pj .

The objective is to select a feasible (both bag and capacity
constraints) subset of requests of maximum profit.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 5 / 35

A sample Max-UFP instance

d1 = 7, w1 = 5

d2 = 5, w2 = 10

d3 = 8, w3 = 9

d4 = 6, w4 = 8

10 10 13 15 14 11 10

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 6 / 35

Motivation

The path graph is a natural setting for many applications, where a
limited resource is available and the amount of the resource varies
over time.

Many combinatorial optimization problems which are NP-Hard on
general graphs remain NP-Hard on paths.

We can represent time instants as vertices, time intervals as edges
and the amount of resource available at a time interval as the
capacity of the corresponding edge.

The requirement of a resource between two time instants can be
represented as a demand between the corresponding vertices with a
certain profit associated with it.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 7 / 35

Application of Round-UFP

Consider an optical line network, where each color corresponds to a
distinct frequency in which the information flows.

Different links along the line have different capacities, which are a
function of intermediate equipment along the link.

Each request uses the same bandwidth on all links that this request
contains.

As the number of distinct available frequencies is limited, minimizing
the number of colors for a given sequence of requests is a natural
objective.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 8 / 35

Related Work for Round-UFP

Round-UFP is NP-Hard for arbitrary demands since, if we take P
to be a single edge, this is the Bin-Packing problem.

If all capacities and demands are 1, this is the Interval Graph
Coloring problem, for which a greedy algorithm gives the optimum
coloring with ω colors, where ω is the maximum clique size of the
interval graph.

For the corresponding online problem, Kierstead and Trotter gave an
online algorithm which uses at most 3ω − 2 colors. They also gave a
lower bound of 3ω − 2 on the number of colors required in any
coloring output by any deterministic online algorithm.

The best upper bound known for the First-Fit algorithm due to
Pemmaraju et al. is 8ω, and a lower bound of 4.4ω was shown by
Chrobak and Slusarek.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 9 / 35

Related Work for Round-UFP . . .

For unit capacities and arbitrary demands, Narayanaswamy gave a
10-competitive algorithm. Epstein et al. proved a lower bound of
24
7 ≈ 3.43 for this problem.

For arbitrary capacities and demands, Epstein et al. gave a
78-competitive algorithm, assuming the maximum demand is at most
the minimum capacity (no-bottleneck assumption).

They also proved that without this assumption, there is no
deterministic online algorithm for interval coloring with nonuniform
capacities and demands, that can achieve a competitive ratio better

than Ω(log log n) or Ω
(

log log log
(
cmax
cmin

))
. Here, cmax and cmin are

the maximum and minimum edge capacities of the path respectively.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 10 / 35

Application of Max-UFP and Bag-UFP

Consider a system offering a resource in limited quantity, where the
availability of this resource varies over time.

There are a set of users who want to use different amounts of this
resource over different time intervals and are ready to pay its owner.

The aim of the owner is to select a subset of these users to maximize
his profit, while satisfying the resource availability constraint at each
instant.

The concept of bag constraints (at most one request can be selected
from each bag) in Bag-UFP arises in a situation where a job can
specify a set of possible time intervals where it can be scheduled.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 11 / 35

Related Work for Max-UFP and Bag-UFP

Max-UFP and Bag-UFP are weakly NP-Hard, since they
contain the Knapsack problem as a special case, where there is just
one edge.

Recently, it has been proved that Max-UFP is strongly NP-Hard,
even for the restricted case where all demands are chosen from
{1, 2, 3} and all capacities are uniform.

This means that the problem does not have a fully polynomial time
approximation scheme (FPTAS).

However, the problem is not known to be APX-hard, so a polynomial
time approximation scheme (PTAS) may still be possible.

When all capacities, demands and profits are 1, Max-UFP
specializes to the Maximum Edge-Disjoint Paths problem.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 12 / 35

Approximation Algorithms for Max-UFP and Bag-UFP

For Max-UFP, Chekuri et al. gave a (2 + ε)-approximation
algorithm on paths and a 48-approximation on trees under NBA.

Bonsma et al. gave a polynomial time (7 + ε)-approximation
algorithm for any ε > 0 without NBA.

This was later improved to a (2 + ε)-approximation algorithm by
Anagnostopoulos et al., matching the bound of Chekuri et al.

Chekuri et al. gave a O(log2 n)-approximation algorithm on trees
without NBA.

Chakaravarthy et al. gave a 120-approximation algorithm for the
Bag-UFP problem on paths assuming NBA.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 13 / 35

Our Results (assuming NBA)

3-approximation algorithm for unit capacities, arbitrary demands for
Round-UFP.

24-approximation algorithm for arbitrary capacities and demands with
NBA for Round-UFP.

17-approximation algorithm for Max-UFP.

65-approximation algorithm for Bag-UFP.

58-competitive online algorithm for Round-UFP.

64-approximation algorithm for Round-UFP on trees.

We give a unified framework for solving all these problems.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 14 / 35

Preliminaries

Fe = Set of all requests passing through edge e.

le = Total demand of all requests passing through e =
∑

i:Ii∈Fe
di, is

the load on edge e.

re =
⌈
le
ce

⌉
, is the congestion on edge e.

r = maxe∈E re, is the maximum congestion on any edge.

Let OPT be the minimum number of colors required for the given
problem instance. Clearly, OPT ≥ r.

If ω demands are mutually incompatible with each other, then each of
them has to be assigned a different color. Hence, OPT ≥ ω.

The bottleneck edge bi of a request Ii is the minimum capacity edge
on the path from si to ti.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 15 / 35

Unit capacities and arbitrary demands for Round-UFP

Separate the requests based on whether di >
1
2 (large demands) or

di ≤ 1
2 (small demands).

Two large demands passing through a common edge can’t be given
the same color.

This is like the interval coloring problem, which can be solved
optimally.

We sort the small demands based on their left endpoints and then use
first-fit.

It can be proven that this requires at most 2 ·OPT colors.

In total, we require at most 3 ·OPT colors.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 16 / 35

Arbitrary capacities, arbitrary demands for Round-UFP

Separate the requests based on whether di >
1
4bi (large demands) or

di ≤ 1
4bi (small demands), where bi is the bottleneck edge capacity.

For large demands, round down capacity of every edge to the nearest
multiple of cmin. This will lose a factor of 2.

Round up every demand to cmin. This will lose a factor of 4.

The resulting instance has uniform demands, which can be colored
with r colors. So, large demands require 8r colors.

We sort the small demands based on their left endpoints and then
assign a demand to the first color where the total load on the
bottleneck edge e is at most ce

16 .

It can be proven that this requires at most 16r colors and the coloring
is feasible.

In total, we require at most 24r ≤ 24 ·OPT colors.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 17 / 35

Linear Programming formulation for Max-UFP

A natural linear programming formulation for Max-UFP on a path is
given below. Here xi denotes the fraction of the demand i that is satisfied
and Ii is the unique path between si and ti.

maximize
k∑
i=1

wixi (UFP-LP)

such that
∑
i:e∈Ii

dixi ≤ ce ∀e ∈ E

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , k}

If we replace the constraints xi ∈ [0, 1] by the constraints xi ∈ {0, 1} we
get an integer program, which precisely models the Max-UFP problem.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 18 / 35

Convex decomposition of a fractional LP solution

Suppose x is a feasible fractional solution for a maximization LP and
z1, . . . , zk be feasible integral solutions for the LP.

Let x =
∑k

i=1 λizi, where
∑k

i=1 λi = α.

Then the best solution, say zmax among z1, . . . , zk is at least 1
α

fraction of the value of x.

This can also be viewed as covering the fractional solution with some
integral solutions, which is like coloring.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 19 / 35

Max-UFP and Bag-UFP

Separate the requests based on whether di >
1
4bi (large demands) or

di ≤ 1
4bi (small demands), where bi is the bottleneck edge capacity.

For Max-UFP, large demands instance can be solved optimally
using dynamic programming.

We can get a 16-approximation using ideas from Round-UFP.

Overall, we get a 17-approximation.

For Bag-UFP, there is a 48-approximation for large demands.

We can get a 17-approximation using ideas from Round-UFP and
the fact that a factor of 1 will be added due to bag constraints.

Overall, we get a 65-approximation.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 20 / 35

Online Interval Coloring with capacities and demands

We scale down all capacities and demands by a factor of cmin, so that
the new cmin = 1 and the new dmax ≤ 1.

Then we round down all edge capacities to the nearest power of 2, so
that if c(e) ∈ [2k, 2k+1) then the new c(e) = 2k.

The class of a demand di is defined as `i = log2 c(bi).

For a demand di in class j ≥ 1, we call it a small demand if
di ≤ min(1, 2j−3).

For a demand di in class 0, we call it a small demand if di ≤ 1
4 .

Note that large demands can exist only in classes 0, 1 and 2.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 21 / 35

Schematic representation of classes of demands

Class Small Large Bottleneck capacity Allocated capacity
0

(
0, 14
] (

1
4 , 1
]

1 1
1

(
0, 14
] (

1
4 , 1
]

2 1
2

(
0, 12
] (

1
2 , 1
]

4 2
3 (0, 1] none 8 4
...

...
...

...
...

j (0, 1] none 2j 2j−1

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 22 / 35

Handling small demands

Small demands are 1
4 -small.

The resulting instance has uniform capacity.

4-competitive algorithm for this.

Additional loss of a factor of 8 due to rounding and allocating only
2j−1 capacity instead of 2j .

So this is 32-competitive.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 23 / 35

Algorithm for small demands and uniform capacity

Our algorithm partitions intervals into disjoint sets and colors each set
independently with separate colors.

S = {S1, S2, . . .} is the family of sets containing already processed
requests.

Si is the set of requests at level i.

For each new request R, we look for a set with the lowest possible
index k such that the total load of all the demands in(⋃k

i=1 Si

)
∪ {R} on any edge e of R does not exceed 1

4k.

If on any edge e this inequality is violated, we call e a critical edge of
R on that level.

Note that e is the edge which prevented R to be put on level k.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 24 / 35

An online algorithm for 1
4-small demands

// ki is the number of levels used.

ki ← 1;
while there are still requests in the input do

let Ri = (si, ti, di) be the next request;
find the smallest level k ∈ {1, . . . , ki} such that for every edge e ∈ Ii,
the total load of the requests in ∪kk′=1Sk′ (including Ri), i.e.,
le(∪kk′=1Sk′ ∪ {Ri}), is at most k

4 ;
if no such level is found then

ki = ki + 1;
go to line 7.

end
// assign Ri to level k.
Sk ← Sk ∪ {Ri};

end

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 25 / 35

Competitive ratio

Small demands require at most 32 ·OPT colors.

Large demands in classes 0, 1 and 2 require at most 26 ·OPT colors.

Total number of colors required is at most 58 ·OPT.

Hence, this algorithm is 58-competitive.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 26 / 35

How bad the congestion bound can be?

v1 v2e1 e2 vnvn−1 en−1

2 12n−2 2n−3

2n−2

2n−3

2

1

2n−4

2n−4

opt = n, r = 2, ω = n.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 27 / 35

Resource allocation for scheduling jobs

The timeline is uniformly divided into discrete timeslots t from 1 to T .

We have a set of jobs J , and a set of resources I.

Each job j ∈ J is specified by an interval I(j) = [s(j), e(j)], where
s(j) and e(j) are the start time and end time of the job j.

Each job j has a demand d(j), which we assume to be one unit.

Further, each resource i ∈ I is specified by an interval
I(i) = [s(i), e(i)], where s(i) and e(i) are the start time and the end
time of the resource i.

Each resource i has a capacity w(i) and a cost c(i).

A feasible solution is a set of resources such that at any timeslot, the
total capacity of the resources is at least the total demand of the jobs
active at that timeslot, i.e., the selected resources must cover the
jobs. We call this the Resource Allocation problem (ResAll).

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 28 / 35

An instance of a resource allocation problem

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 29 / 35

The partial covering and prize-collecting versions

PartialResAll: In this problem, the input also specifies a number
k (called the partiality parameter) that indicates the number of jobs
to be covered. A feasible solution is a pair (R, J) where R is a
multiset of resources and J is a set of jobs such that R covers J and
|J | ≥ k. The cost of the solution is the sum of the costs of the
resources in R (taking copies into account). The problem is to find a
feasible solution of minimum cost.

PrizeCollectingResAll: In this problem, every job j also has a
penalty pj associated with it. A feasible solution is a pair (R, J) where
R is a multiset of resources and J is a set of jobs such that R covers
J . The cost of the solution is the sum of the costs of the resources in
R (taking copies into account) and the penalties of the jobs not in J .
The problem is to find a feasible solution of minimum cost.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 30 / 35

Related work

Partial covering and prize-collecting problems are natural
generalization of full cover problems. Some examples are k-MST,
partial vertex cover and prize-collecting Steiner tree problems.

Bar-Noy et al. studied the full cover version where all the jobs have to
be covered. They gave a 4-approximation algorithm for this problem.

Chakaravarthy et al. considers a scenario, where the timeslots have
demands and a solution must satisfy the demand for at least k of the
timeslots. They gave a 16-approximation for this problem.

In our setting, a solution needs to satisfy k jobs, where each job can
span multiple timeslots. A job may not be completely spanned by any
resource, and thus may require multiple resource intervals for covering
it. This is a generalization of both these problems.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 31 / 35

Our Results

We present an O(log(n+m))-approximation algorithm for the
PartialResAll problem, where n is the number of jobs and m is
the number of resources respectively.

For the PrizeCollectingResAll problem, we give a
4-approximation algorithm.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 32 / 35

Approximation Algorithm for PartialResAll

A collection of jobs M is called a mountain, if there exists a timeslot
t such that all the jobs in this collection span the timeslot t.

A collection of jobs M is called a mountain range, if the jobs can be
partitioned into a sequence M1,M2, . . . ,Mr such that each Mi is a
mountain and the spans of any two mountains are non-overlapping.

We show that the input set of jobs can be partitioned into
O(log(m+ n)) mountain ranges.

Then we give a constant factor approximation algorithm for the
special case of the PartialResAll problem, where the input set of
jobs form a single mountain range M.

Using these two results along with dynamic programming, we get an
approximation algorithm for the PartialResAll problem.

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 33 / 35

Mountain and mountain ranges

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 34 / 35

Conclusion and future work

Can we improve the approximation factor of Round-UFP,
Max-UFP and Bag-UFP problems on paths and trees?

What is the approximability of these problems without the
no-bottleneck assumption? For Max-UFP on paths, a
(2 + ε)-approximation is known.

Is there a better constant factor competitive algorithm for the
Online Interval Coloring problem?

Is there a constant factor approximation algorithm for the
PartialResAll problem?

Is there a constant factor approximation algorithm for the
PrizeCollectingResAll problem having the Lagrangian
Multiplier Preserving property?

What is the hardness of approximation of these problems?

Arindam Pal (IIT Delhi) Unsplittable Flow and Scheduling January 31, 2014 IIT Delhi 35 / 35

